

C. U. Shah University, Wadhwan City

Faculty of Computer Science

Name of Program: Bachelor of Science (Information Technology)

(B.Sc.IT)

Semester : II

W.e.f. June – 2016

Teaching & Evaluation Scheme

Sr. No	Subject Code	Subject Name	Teaching Hours/Week					Evaluation Scheme/Semester							
			Th	Tu	Pr	Total	Credits	Theory			Practical		al		
								Sessional Exam		University Exam		Internal		Uni.	Total Marks
								Marks	Hrs	Marks	Hrs	Pr	тw	Pr	
2	4CS02ICN2	Computer Oriented Numerical Methods	4	-	-	4	4	30	1.5	70	3	-	-	-	100

Objectives: To impart the numerical mathematical solution techniques.

Pre-requisites: A basic understanding of Mathematical techniques and Programming language C is necessary.

Course Outline:

Chapter No	Chapter Name	Course Contents	Lect. Hours
1.	Programming of Matrix	 1.1 Trace of the matrix 1.2 Transpose of matrix 1.3 Addition of matrix 1.4 Subtraction of matrix 1.5 Multiplication by a scalar 1.6 Multiplication of two matrices 1.7 Adjoint of a matrix 1.8 Inverse of matrix 	9
2	Linear system of equation	 2.1 Solution of linear equation using direct methods 2.2 Gauss –elimination method 2.3 Gauss- Jordan method 2.4 Gauss-Jacobi method 2.5 Gauss-Seidal method 	10
3	Finite difference &Interpolation	 3.1 Definition 3.2 forward- difference table 3.3 backward-difference table 3.4 Newton's forward difference formula 3.5 Newton's backward difference formula 3.6 Langrage's interpolation 	10
4	Solution of Algebraic and Transcendental equations	4.1 Bisection method 4.2 False Position method	

5	Numerical Integration	5.1 Trapezoidal method5.2 Simpson's 1/3 rule5.3 Simpson's 3/8		6
6	Numerical solution of ordinary differential equations	 6.1 Euler's method 6.2 Modified Euler's method 6.3 Rungekutta 2nd order method 6.4 Rungekutta 4th order method 		10
			TOTAL	55

Reference books:

- 1. "Computer Oriented Numerical Methods", V. Rajaraman, PHI Publication(3rd Edition)
- 2. Discrete Mathematical Structure (Third Edition), Bernard Kolman, Robert C. Busby, Sharon Roass, Prentice Hall of India Pvt. Ltd.
- 3. "Numerical Method" E. Balagurusamy, TMH Publication (7th Edition)
- 4. "Computer Oriented Numerical Methods", R.S.Salaria, Khanna Book Publication(4thEdition)
- 5. Discrete Mathematics and Its Applications, Tata Mcgraw Hill (5thEdition), Kenneth .H. Rosen

Program list

Chapter 1: Matrix

- 1. Write a Program to find the trace of the matrix.
- 2. Write a Program to find transpose of the matrix.
- 3. Write a Program to find the adjoint of the matrix.
- 4. Write a Program to find the inverse of the matrix

Chapter 2:Linear system of equation

- 5. Write a Program to find the solution of equations using Gauss elimination method.
- 6. Write a Program to find the solution of equations using Gauss Jordan method.
- 7. Write a Program to find the solution of equations using Gauss Jecobi method.
- 8. Write a Program to find the solution of equations using Gauss Seidal method.

Chapter 3: Finite difference & Interpolation

- 9. Write a Program to create and display forward difference table.
- 10. Write a Program to create and display backward difference table.
- 11. Write a Program to find the solution using Newton's forward difference formula
- 12. Write a Program to find the solution using Newton's backward difference formula.
- 13. Write a Program to find the solution using Langrage's interpolation formula.

Chapter 4:Solution of Algebraic and Transcendental equations

- 14. Write a Program to find the solution using Bisection method.
- 15. Write a Program to find the solution using False Position method.
- 16. Write a Program to find the solution using Secant Method.
- 17. Write a Program to find the solution using Newton Raphson method.

Chapter 5:Numerical Integration

- 18. Write a Program to find the solution using Trapezoidal rule.
- 19. Write a Program to find the solution using Simpson's 1/3 rule.
- 20. Write a Program to find the solution using Simpson's 3/8 rule.

Chapter 6:Numerical solution of ordinary differential equations

- 21. Write a Program to find the solution using Euler's method.
- 22. Write a Program to find the solution using Modified Euler's method.
- 23. Write a Program to find the solution usingRungekutta 2nd order method.
- 24. Write a Program to find the solutionusing Rungekutta 4th order method.